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Introduction

Peptidomimetic drugs have attracted increasing interest and
intense research efforts over the past 20 years, especially be-
cause it was shown that the severe limitations, which ham-
pered the oral delivery of peptide-like molecules, could be suc-
cessfully addressed.[1] Among the barriers affecting peptide
bioavailability after oral administration is intestinal absorption,
which plays a crucial role for hydrophilic peptides in particular,
as they are rarely absorbed by passive permeation. This prob-
lem might be overcome by using prodrug strategies or by in-
creasing the affinity for intestinal carriers.[2]

The more recent strategies in medicinal chemistry involve
pharmacokinetic characterization of new molecules as soon as
possible in the development pipeline, with the clear aim to
select (and develop) only drug-like compounds with optimal
pharmacokinetic behavior.[3] Such early pharmacokinetic analy-
sis requires the acquisition of as many useful and relevant mo-
lecular properties as possible to allow reliable predictions of
drug-likeness, also for large molecular libraries.[4] Because natu-
ral peptides are actively absorbed by intestinal carriers, a valua-
ble pharmacokinetic screen for peptidomimetic compounds
should predict which molecules have a significant likelihood of
mimicking the natural peptides that are actively absorbed via
intestinal carriers. For these hydrophilic peptide-like molecules,
this information is even more important than the classical
physicochemical descriptors (such as log P, PSA, and aqueous
solubility) commonly used in pharmacokinetic screening.

Among the intestinal carriers,[5] the apical proton-dependent
peptide transporters play a key role in the absorption of di-
gested dietary proteins as well as peptidomimetic drugs such
as b-lactam antibiotics and ACE inhibitors.[6] The opportunity

to exploit such transporters in drug delivery has spurred sever-
al functional characterization studies, and in 1994 the first in-
testinal transporter, PepT1, was cloned from rabbit.[7] After-
ward, a wealth of data on various transported substrates was
accumulated, allowing rationalization of the structural require-
ments for optimal transport.

The cloned transporter belongs to the POT (proton-depen-
dent oligopeptide transporter) superfamily, which includes pro-
teins from a wide species range, from yeasts to humans.[8] In
humans, two members of the POT superfamily possess trans-
port activity, namely hPepT1 (SLC15 a1) and hPepT2 (SLC15 a2).
Specifically, hPepT1 is expressed in the small intestine, in the
proximal tubules of the kidney, as well as in pancreatic, liver,
and renal cells. This transporter is a H+/peptide co-transporter,
which exploits the proton gradient between the intestinal
lumen (pH ~5.5–6) and cells (pH ~7). Such a gradient is main-
tained by the activity of a Na+/H+ exchanger, which, in turn, is
fueled by the basolateral Na+/K+ ATPase. Moreover, anionic,

An early pharmacokinetic screen for peptidomimetic drugs
should have the ability to predict molecules with high affinity for
intestinal transporters, as peptide-like derivatives are seldom ab-
sorbed passively. Hence, the first objective of this study was to
generate a reliable model for the structure of the hPepT1 protein,
which is the main intestinal transporter involved in the absorp-
tion of both dietary peptides and peptidomimetics. The modeling
was based on the resolved structure of the homologous bacterial
lactose permease LacY using a fragmental strategy. The interac-
tion capacities of the hPepT1 model were explored by docking a
set of 50 known ligands. Despite the known predilection of

hPepT1 for hydrophobic ligands, docking results unveiled the key
role of the polar interactions stabilized by charged termini, espe-
cially concerning the ammonium head group. The docking results
were further verified by developing a pharmacophore model that
confirmed the key features required for optimal hPepT1 affinity.
The consistency of the docking results and the agreement with
the pharmacophore model afford an encouraging validation for
the proposed model and suggest that it can be exploited to
design peptide-like molecules with an improved affinity for such
a transporter.
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cationic, and neutral molecules are transported with very simi-
lar efficacy, suggesting that the number of co-transported pro-
tons can vary depending on the substrate’s charge.[9]

The large number of affinity values for hPepT1 afforded a
comprehensive understanding of the structure–activity rela-
tionships (SAR) for such a transporter.[10] The structural require-
ments that a given molecule must fulfill for optimal transport
can be summarized as follows: 1) although no systematic stud-
ies have analyzed the effects of substrate size on hPepT1 activ-
ity, it is reasonable that the optimal length corresponds to that
of di- and tripeptides, while tetrapeptides and single amino
acids are not well recognized; 2) transport is markedly stereo-
specific : natural amino acids are properly transported, whereas
the introduction of d isomers vastly decreases affinity; 3) the
terminal groups are not mandatory for transport, even if modi-
fications of the carboxylate group are better tolerated than
those of the amino group; 4) central peptide bonds are not re-
quired for optimal bioactivity, and several substrates without
peptide bonds show significant affinity for hPepT1; and 5) hy-
drophobic side chains are preferred. Such qualitative observa-
tions have been translated into QSAR models mainly through
the use of 3D approaches.[11, 12] Similarly, pharmacophore
models have allowed the differentiation between substrates
and inhibitors.[13] However, full-length homology models for
hPepT1 and docking simulations with the aim to analyze sub-
strate recognition at the atomic level have not yet been re-
ported.[14]

The hPepT1 transporter is a 708-residue protein with a trans-
membrane bundle composed of 12 membrane-spanning heli-
ces. It has a large extracellular loop between transmembrane
(TM) regions 9 and 10, and both termini face the cytosol.[15] Be-
cause hPepT1 is a transmembrane protein, its structure cannot
be easily resolved. However, the hPepT1 structure can be mod-
eled considering its homology with the recently crystallized
bacterial lactose permease LacY.[16] We therefore set out to
generate a 3D model of full-length hPepT1 by homology tech-
niques. Although it was possible to model such a protein
using LacY as the unique template, we exploited the fragmen-
tal approach, as recently proposed by some of us.[17–20] Such a
method allows the generation of consistent models for any
transmembrane protein, accounting for local homologies and
avoiding the construction of models that lose their structural
peculiarities in being forced to conform with the structure of a
unique global template.

The model obtained was tested by docking a representative
dataset of 50 known hPepT1 substrates. The objectives of a
docking analysis are to investigate ligand recognition, to ra-
tionalize (and predict) the various affinities for the docked sub-
strates, and to afford an indirect validation for the proposed
hPepT1 model. The docking results were further assessed by
comparing them with a purposely developed pharmacophore
model, which confirmed the key features required for optimal
transport.

Results and Discussion

Homology model analysis

Figure 1 shows the ribbon structure of the hPepT1 model, col-
ored by segments, which unveils the typical folding of such
transporters with 12 TM segments (TM1–TM12) and a very

large extracellular loop (EL5), which fully covers the extracellu-
lar side. The transmembrane bundle assumes an elliptical trun-
cated cone shape with the cytoplasmic side larger than the ex-
tracellular side. This particular shape is due to the TM seg-
ments, which are far from being parallel, and some segments
appear markedly staggered at an angle of 308 with respect to
the adjacent helices; this distorts the global arrangement of
the TM domain. In the bacterial template,[21] the large extracel-
lular loop is placed between TM6 and TM7 and allows the TM
bundle to be divided in two specular six-helix domains, where-
as in hPepT1 the large extracellular loop between TM9 and
TM10 does not allows such a clear-cut subdivision of the TM
bundle, which appears more homogeneously arranged.

Figure S1 and Table S1 in the Supporting Information clarify
the correct disposition of TM segments. Specifically, their ar-
rangement does not pertain to numerical order, but it is possi-
ble to recognize a more internal group of helices (TM1, TM4,

Figure 1. Ribbon structure of the hPepT1 protein model. Readily visible in
red is the very large EL5 loop, which fully covers the extracellular side.
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TM5, TM7, and TM10), which line the central pore and bear the
key residues involved in substrate recognition. A second and
more external set of TM segments (TM2, TM3, TM6, TM8, TM11,
and TM12) define the boundary of the TM bundle and contact
phospholipid molecules. Interestingly, the two groups of TM
segments also differ in their lipophilic properties. Indeed, the
helices that face the central pore are more hydrophilic and
were predicted mainly using coiled-coil-containing tem-
plates,[22] whereas the more external segments are markedly
lipophilic and were modeled using templates characterized by
highly hydrophobic surfaces (as described below in the Experi-
mental Section).

Apart from the large EL5 segment, the other extracellular
loops are short arc-shaped segments inserted between the TM
bundle and the EL5 loop. Their folding is mainly stabilized by
polar interactions between neighboring charged residues. Con-
versely, the large EL5 loop fully covers the extracellular side of
TM bundle and consists of two large domains connected by
two hinge loops. Both domains include a three-layer (ab) sand-
wich. The hinges may confer flexibility to two domains, which
could assume closed or open conformations to modulate the
accessibility of the binding cavity. Compelling evidence for
such putative flexibility is that the template used here (sucrose
phosphatase) can also assume two different conformations, as
revealed by its crystal structures.[23] Notably, the template is a
metalloenzyme, which recognizes some sugar substrates with
remarkable selectivity. This suggests that EL5 may also selec-
tively bind sugars or metal ions involved in modulatory effects
on hPePT1, as reported by recent experimental studies.[24, 25]

Apart from CL3, the cytoplasmic loops (CL) are short hydrophil-
ic segments, whose folding appears stabilized by polar interac-
tions. The CL3 segment assumes a more complex conforma-
tion, as it begins with an extended region and ends with two
parallel helices connected by a short bridge. Globally, these
segments are rich in cationic residues, which anchor the pro-
tein to phospholipids or contact other intracellular proteins.

Finally, both terminal domains are hydrophilic segments that
face the cytosol. The N-terminal domain is a very short seg-
ment, whereas the C-terminal domain is an extended arc-
shaped segment that lines the intracellular side of the trans-
porter. The folding is stabilized by polar interactions, and the
cationic residues have the same roles as described above for
CL loops.

Docking results

A bird’s-eye analysis of the docking results reveals palpable
heterogeneity among the binding modes that the substrates
can assume in the hPepT1 cavity. This finding is easily ex-
plained considering that no functional group is truly mandato-
ry for bioactivity, as evidenced by SAR, and thus the binding
mode is influenced by the physicochemical properties of the
substrate’s side chains. Nevertheless, a more in-depth analysis
of the computed complexes allows identification of hPepT1
residues that are most frequently involved in ligand recogni-
tion, as compiled in Table S2 (Supporting Information), which

lists the residues involved as well as the ligand-interacting moi-
eties for each substrate.

Overall, the key residues can be subdivided into three
groups: 1) residues that preferentially interact with the ligand’s
charged N terminus, 2) residues that can interact with the li-
gand’s charged C terminus, and 3) residues that primarily con-
tact the side chains. Remarkably, residues of the first two
groups mainly undergo polar interactions, whereas those of
last group can be involved in both polar and hydrophobic in-
teractions, depending on side chain polarity, even if the apolar
contacts are clearly more frequent.

Analysis of the relative frequency of each monitored residue
(as listed in Table S2) reveals that only one residue, Tyr588
(TM10), is always involved in ligand recognition. In particular,
compounds with the highest affinity (namely those with pKi>

0) are able to stabilize strong interactions between Tyr588 and
the ligand’s ammonium head group, whereas derivatives with
lower affinity cannot realize such an interaction; at best, they
contact Tyr588 through the side chains or peptide bonds.

Figure 2 summarizes the most frequent interactions as col-
lected in Table S2. Specifically, the N-terminal ammonium head
group probably plays the most critical role, as it interacts with

Tyr588 and also forms ion pairs with Glu23 (TM1) and/or Glu26
(TM1). Conversely, the C-terminal carboxylate group appears
less involved in ligand recognition, as it stabilizes only H bonds
with the backbone of Ala295 (TM7), Leu296 (TM7), and Phe297
(TM7) without forming strong ionic interactions. The pattern of
residues that interact with the side chains is clearly more heter-
ogeneous, thus justifying the ability of hPepT1 to interact with
structurally diverse substrates. Nevertheless, it is possible to
recognize a set of residues involved mainly in the interaction
with the N-terminal side chain (SC1) such as Asn22 (TM1),
Glu23, and Phe293, whereas the C-terminal side chain (SC2)
contacts mostly Trp294, Ile331 (TM8), and Ile335 (TM8). Nota-
bly, Tyr588 can also contact the side chains to form apolar in-
teractions or undergo p–p stacking.

Although apolar substrates are clearly preferred, docking re-
sults suggest that polar side chains can be accommodated
both at SC1, where they can contact Asn22 and Glu23, reinforc-
ing the interactions generated by the N terminus, and at SC2,

Figure 2. Two-dimensional scheme illustrating the most frequent residues in-
volved in ligand recognition (SC = side chain).

ChemMedChem 2008, 3, 1913 – 1921 � 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemmedchem.org 1915

Modeling and Analysis of hPepT1

www.chemmedchem.org


where they can interact with Glu291 (TM7) and Thr327 (EL4).
Finally, the central peptide bond can stabilize H bonds with
backbone atoms of Phe293 and Trp294. Such interactions can
be hindered by bulky side chains, and thus one can conclude
that the contacts of peptide groups could partially counterbal-
ance the decreased interactions stabilized by small side chains.

These preliminary observations are in remarkable agreement
with known SAR and mutational analyses. Indeed, the different
pattern of interactions realized by the charged termini can
clearly explain why modifications on the C terminus are better
tolerated than those on the N terminus. Again, the scarce inter-
actions realized by peptide bonds can clarify why this function
is not mandatory and several substrates without amide groups
are successfully transported. Finally, the precise arrangement
of the interactions formed by the charged termini (especially
the ammonium head group) justify the stereospecificity of the
interaction between peptides and hPepT1, as proven by the in-
ability of d-Tyr ACHTUNGTRENNUNG(OBz)-Ala to form strong H bonds between
Tyr588 and the N-terminal ammonium head group. Moreover,
results of mutagenesis studies confirm the critical role of
Glu26, Phe293, Trp294, and Tyr588, the mutations of which de-
crease affinity and block transport.[26, 27]

As an informative example of the binding mode of the tri-
peptides, Figure 3 depicts the complex formed with Met-Met-
Met, which has the highest affinity among the docked tripepti-

des. Specifically, Figure 3 shows that the hPepT1 binding cavity
can successfully accommodate such a tripeptide and realizes a
vast pattern of relevant interactions involving all the ligand
functional groups. Indeed, 1) the ammonium head group
forms ion pairs with Glu23 and Glu26 in addition to the critical
H bond with Tyr588; 2) the C-terminal carboxylate group forms
H bonds with the backbone atoms of Tyr588 and Gln587

(TM10) instead of Ala295, Leu296, and Phe297, as is the case
with dipeptides; 3) the peptide bonds stabilize H bonds with
the backbone atoms of Phe293, Trp294, Leu296, and Phe297;
and 4) the side chains form hydrophobic contacts with Cys25
(TM1), Phe293, Trp294, Leu296, Phe297, plus a set of aliphatic
residues (such as Ile331, Ile335, and Leu591) not shown in
Figure 3 for clarity.

Taken together, the docking results for tripeptides suggest
that the interaction pattern realized by the N-terminal ammo-
nium head group is constant and independent of substrate
length, whereas the interactions realized by the carboxylate
terminus can change depending on ligand size, even when
always involved in H bonds with backbone atoms. Curiously,
the peptide bonds in the tripeptides are involved in H bonds
with residues that usually interact with the carboxylate group
of dipeptide substrates.

Even avoiding a systematic description of all computed com-
plexes, some docking results deserve a deeper analysis. The
Ala-Ala dipeptide clearly shows the relevance of H bonds real-
ized by peptide bonds which can successfully compensate for
the limited contacts elicited by small side chains. Again, the
ligand with highest affinity, namely TyrACHTUNGTRENNUNG(OBz)-Ala, underscores
the positive role of p–p stacking that the ligand forms with
Phe293, Trp294, Phe297, and Tyr588, while the ether function
forms H bonds with Asn22. Finally, the modest affinity of the

Gly-containing peptides can be justified by the ab-
sence of side chains, and thus interactions which
could further stabilize the complexes.

As anticipated, the main feature that characterizes
the complexes with compounds of lower affinity (i.e.
pKi<0), is their inability to stabilize strong H bonds
between Tyr588 and a given ligand’s ammonium
head group. The reasons for such a failure are as fol-
lows: 1) limited accessibility of the ammonium head
group, which is shielded by surrounding bulky
groups, as is the case with amoxicillin, where Tyr588
is hindered by the phenoxy ring, with which it forms
p–p stacking interactions and thus cannot approach
the N terminus; 2) insertion of the ammonium head
group in a ring, as is the case with Pro-containing
peptides: in such complexes, the protonated group
is buried by a cyclic moiety and cannot interact with
Tyr588; 3) the lack of an N terminus as is the case for
several docked b-lactams: here, Tyr588 forms
H bonds with the peptide bonds or carboxylate func-
tions. Conceivably, the ligands without an ammoni-
um terminus are characterized by the lowest affinity
values.

Another ligand property that appears to influence
hPepT1 affinity is the distance between the two

charged termini. In particular, Table 1 suggests that the com-
pounds with highest affinity are those with a distance of about
6 � between the N and C termini. This value is in agreement
with previous COMSIA models,[11] which suggested a distance
range of 5.2–5.6 � between the charged termini to elicit opti-
mal affinity for hPepT1. Conversely, ligands with a greater dis-
tance, as with some antibiotics, or with a very small distance,

Figure 3. Three-dimensional representation of the complex realized by the highest-affini-
ty tripeptide (Met-Met-Met) in the binding cavity of hPepT1. The main interactions in-
volve: 1) the N terminus with Tyr588, Glu23, and Glu26; 2) the C terminus with Gln587;
3) the side chains with Phe293, Trp294, Leu296, and Phe297.
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as found in some ligands in which the charged moieties are in-
volved in intramolecular ion pairs, show lower affinity as they
are probably unable to generate the rich pattern of polar inter-
actions illustrated in Figure 2. Thus, the intermediate affinity of
2-aminothiazole-4-acetic acid (ATAA) derivatives[28] can be ex-
plained considering that such a constrained moiety prevents
the formation of intramolecular ion pairs even if the two

charged groups are arranged too far to fully optimize their key
polar interactions.

Table 1 lists the 50 docked substrates with their affinity
values (expressed as Ki, mm) as well as the values of the dock-
ing score and properties exploited in the predictive equation 1.
Notably, all score functions were preliminarily tested as com-
puted by FRED software. Table 1 lists only Zapbind scores, be-
cause they afforded the best correlation with the experimental
affinities and were thus inserted in Eq. 1. In particular, such a
function accounts for the ionic interactions being based on a
combination of surface contact terms and Poisson–Boltzmann
energy approximations (as computed by ZAP module).[29]

pK i ¼ �0:235 ð�0:0366Þ D distance�7:912� 10�3 ð�0:00268Þ
Zapbindþ1:534 ð�0:167Þ Int Tyr588�0:489 ð�0:194Þ
n ¼ 50, r2 ¼ 0:85, s ¼ 0:45, F ¼ 89:92

ð1Þ

The affinity prediction afforded by Eq. 1 proved successful as
demonstrated by the regression parameters and Figure 4. The
parameters included in Eq. 1 allow a deeper analysis of the

main factors that influence hPepT1 affinity. More specifically,
Eq. 1 indicates that the affinity is clearly related to the arrange-
ment of charged groups expressed by the difference (D dis-
tance) between the distance values compiled in Table 1 and
the optimal distance (6.02 �) as evidenced by the ligand with
highest affinity. This reflects the significant role of the contacts
elicited by the charged groups in hPepT1 recognition, al-
though compounds without such charged moieties also show
a detectable affinity for the transporter. Despite the known
predilection of hPepT1 for hydrophobic residues, the role of
the Zapbind score further emphasizes the relevance of the
polar interactions formed by charged groups on the ligand. Fi-

Table 1. Affinity values, docking results, and physicochemical properties
used in Eq. 1.

Compound Ki [mm] Zapbind
[kcal mol�1]

Distance
N+ COO� [�]

Int_
Tyr588

Pred. Ki

[mm][a]

TyrACHTUNGTRENNUNG(OBz)-Ala 0.01 �30.64 6.02 1 0.014
Phe(Bz)-Ala 0.02 �30.57 6.01 1 0.026
Val-Phe 0.05 �24.86 4.92 1 0.36
Ala-Pro 0.06 �19.12 5.59 1 0.015
Val-Pro 0.06 �22.24 5.68 1 0.021
Val-ATAA 0.07 �25.38 8.17 1 0.25
Tyr-Ala 0.09 �24.40 3.52 1 0.035
Tyr-Phe 0.09 �31.69 5.36 1 0.25
Ala-Nle 0.09 �22.96 5.87 1 0.035
d-Tyr ACHTUNGTRENNUNG(OBz)-Ala 0.09 �31.47 8.08 0 0.015
Met-Met-Met 0.1 �37.49 5.25 1 0.13
Val-Pro-Pro 0.1 �30.19 7.55 1 0.47
Val-Tyr 0.1 �34.66 5.11 1 0.21
Ala-Phe-Pro 0.11 �32.32 8.78 1 0.15
Leu-Ala-Arg 0.11 44.71 8.40 1 1.1
Phe-Ala 0.11 �25.06 5.73 1 0.035
Ala-Ala 0.11 �19.05 4.82 1 0.21
Ala-Lys 0.22 75.88 6.15 1 0.3
Glu-Ala 0.25 �20.24 3.59 1 0.024
Lys-Asp 0.33 �25.46 5.23 1 0.49
Asp-Asp 0.41 �10.30 5.81 1 0.37
Ciclacillin 0.50 �29.59 8.33 1 1.2
Ala-ATAA 0.51 �23.51 7.72 0 0.29
Phe-ATAA 0.95 �29.10 8.55 1 0.67
Gly-His 1.00 43.06 3.50 1 1.3
Pro-Pro 1.2 �20.64 5.64 0 1.6
Lys-Glu 1.3 �26.16 5.43 0 1.4
Pro-Phe-Lys 2 38.58 9.38 1 4.6
Cloxacillin 2.5 �63.79 0.00 0 2.2
(2S)-1-anilino-
1-oxopropan-2-
amine

2.9 16.23 0.00 1 2.4

Gly-His-Lys 4.1 40.34 9.45 1 18
ATAA 4.9 �16.87 3.25 0 9.3
Cefadroxil 7.5 �33.01 8.45 0 3.6
Pro-Asp 9.8 �20.15 2.70 0 9
Cefixime 12 �48.90 0.00 0 9.4
Oxacillin 12 �63.98 0.00 0 5.6
Metampicillin 13 �52.37 0.00 0 3.7
Ampicillin 14 �31.31 8.45 0 4.6
Pro-Gly-Gly 16 �23.45 8.57 0 27
Pro-Glu 20 �19.45 7.18 0 15
Penicillin V 21 �54.44 0.00 0 4.2
Cefodizime 22 �43.52 0.00 0 7.2
Amoxicillin 25 �32.10 8.47 0 5.3
Leu-Gly-Gly 25 �26.40 8.04 0 10
Benzylpenicillin 40 �48.36 0.00 0 3
Cefotaxime 50 �59.83 0.00 0 0.5
Piperacillin 61 �53.03 0.00 0 3.7
Cefepime 70 �41.67 0.00 0 58
Cephaloridine 100 �37.40 0.00 0 11
Cefpodoxime 110 �57.78 0.00 0 11

[a] Ki value predicted by HypoGen.

Figure 4. Correlations between experimental affinities (expressed as pKi) and
affinity values as predicted by Eq. 1.
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nally, given the vastly beneficial role of the interaction be-
tween Tyr588 and the ammonium head group, we introduced
a binary descriptor that is assigned a value of 1 for substrates
that form such a reinforced H bond, and a value of 0 other-
wise. Conceivably, such a descriptor significantly enhances the
predictive power of Eq. 1. The parameters included in Eq. 1 un-
derscore the relevance of polar interactions, whereas the role
of hydrophobic contacts appears completely ignored. Interest-
ingly, the insertion of the apolar area descriptor (ASA) in Eq. 1
slightly increases its regression parameters, thus confirming
the beneficial role of apolar contacts. The modest improve-
ment in r2 (0.85 vs. 0.87), however, does not justify the inclu-
sion of this descriptor, as confirmed by the decrease in F (89.92
vs. 67.75).

A more in-depth analysis of Figure 4 confirms the goodness
of the affinity predictions; considering the classification in li-
gands with high affinity (pKi>0) from those of lower affinity
(pKi<0) as defined by Cartesian axes, it is apparent that Eq. 1
is able to successfully discriminate among the docked ligands.
Only one derivative is incorrectly predicted, giving a false posi-
tive (indicated by the circle). Specifically, the poorly predicted
compound is the tripeptide Gly-His-Lys, which, in fact, gave a
good docking pose (as exemplified by its H bond with Tyr588).

The soundness of the obtained complexes and their remark-
able agreement with both SAR and mutagenesis studies afford
an encouraging validation of the proposed hPepT1 model and
its computed binding modes. Moreover, Eq. 1 suggests that
these results can be successfully used to predict the ability of
a molecule to interact with hPepT1, clearly distinguishing be-
tween high- and low-affinity derivatives.

Pharmacophore mapping

With a view to confirm the docking results, enriching our
knowledge about the hPepT1 binding modes, HypoRefine was
exploited to derive an automated SAR pharmacophore model
for hPepT1 ligands by using a training set of 25 compounds
taken from the docked dataset. The compounds of the training
set were suitably selected to have a broad range of affinity
values (expressed as Ki, from 0.01 to 70 mm). The 10 hypothe-
ses, which showed the best correlation between estimated
and measured affinity values, are compiled in Table S3 (Sup-
porting Information) as well as the results of statistical signifi-
cance and predictive ability.

The quality of the generated pharmacophore hypotheses
was evaluated by considering the cost functions as computed
by the HypoGen module during hypothesis generation. The
top-ranked pharmacophore model (Hypo1) had the best pre-
dictive power and statistical significance and was characterized
by the highest cost difference (65.316), the lowest RMS (0.748),
and the best correlation coefficient (0.939). These values em-
phasize the great predictability of the 3D-QSAR pharmaco-
phore as evidenced by predicted pKi values compiled in
Table 1, and confirm that it did not come about by chance.

Figure 5 a shows the selected 3D hypothesis which consists
of one hydrophobic region (H), two hydrogen bond acceptors
(A1 A2), one hydrogen bond donor (D), and eight excluded

volume sites (E1–E8) in a specific three-dimensional orienta-
tion. To check the predictive power of this model, the selected
hypothesis was used to predict the affinity values for com-
pounds also not included in the training set (as seen in
Table 1). Globally, the correlation between experimental and
predicted affinities is good (r2 = 0.78) and quite similar to that
obtained by docking simulations. This result further confirms
the goodness and predictive power of the developed pharma-
cophore model. Furthermore, with the aim of comparing such
a pharmacophore model with the docking results, all ligands,
in their bound conformation, were mapped onto the hypothe-
sis. Although the described heterogeneity among the docking
results does not allow a quantitative comparison of all docking
complexes with pharmacophore, the compounds with highest
affinity give a precise mapping onto the pharmacophore
model (as shown in Figure 5 b), the key elements of which con-
firm the precise role of each hPepT1 residue.

Thus, Figure 5 b depicts the pharmacophore regions
mapped on the docking pose of the highest-affinity derivative,
TyrACHTUNGTRENNUNG(OBz)-Ala. Notably, the ammonium head group occupies the

Figure 5. Pharmacophore model for hPepT1 ligands. a) Pharmacophore fea-
tures as derived by the HypoRefine approach (H bond acceptor, A1 A2;
H bond donor, D; hydrophobic region, H; excluded volumes, E1–E8). b) Phar-
macophore model mapped on the docking pose of Tyr ACHTUNGTRENNUNG(OBz)-Ala.
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H bond donor region which overlaps Tyr588, Asp23, and
Asp26; the carboxylate terminus and the peptide bond map to
the H bond acceptor regions corresponding to the backbone
of Phe293, Trp294, Leu296, and Phe297; and the hydrophobic
region corresponds to the C-terminal side chain, suggesting
that a hydrophobic residue is particularly beneficial at such a
position. Finally, the excluded volumes represent the position
of other amino acids not involved in ligand recognition but
that are able to create steric clashes with the lower-affinity
compounds. Interestingly, such excluded volumes are mostly
located near the C terminus, whereas the N terminus appears
less sterically constrained. Indeed, the TyrACHTUNGTRENNUNG(OBz)-Ala dipeptide
confirms that the modification of the N-terminal side chain
with bulky moieties can increase affinity.

Conclusions

This study describes the generation of a reliable 3D model for
hPepT1 that is consistent with published structural and func-
tional information. In particular, the model confirms the global
arrangement of the transmembrane helices, which define a
central vestibule (termed “bubble”), where the substrates can
cross the membrane. The proposed model also affords a more
detailed description of the relative position of TM helices, re-
futing the implicit assumption that helices adjacent in se-
quence are also physically adjacent,[30] as the TM helices are
subdivided into two concentric rings, and their arrangement
does not agree with numerical order (see Figure S1). Again,
docking results confirm that the key residues involved in
ligand recognition are mainly located in TM1, TM8, and TM10,
whose critical roles were already evidenced by mutational
analyses. Finally, the proposed model emphasizes the rele-
vance of the large EL5 segment, which fully covers the extra-
cellular side of the transporter and probably acts as a modula-
tor of vestibule gating.

Moreover, the docking results confirm that the model can
be successfully used to predict ligand affinity for the transport-
er. The clear agreement between two different computational
techniques (docking simulations and pharmacophore models)
yields further validation for the proposed binding modes, sug-
gesting that the described model can be used to design novel
peptidomimetics with improved affinity for hPepT1. Therefore,
the obtained model can find important application in optimiz-
ing the structure of potential hPepT1 substrates and in screen-
ing peptidomimetic libraries to unveil molecules that may be
absorbed via hPepT1 transport. More intriguingly, this model
can be exploited to design compounds in which a poorly ab-
sorbed drug is combined with a suitable peptidomimetic
moiety to generate a prodrug carrier that is recognized by
hPepT1, which also transports the drug.

The basic idea is to adapt the structure of a drug molecule
to the substrate features required by hPepT1 for optimal rec-
ognition. The prodrug should possess sufficient solubility in
the gastrointestinal lumen, be absorbed across the intestinal
brush border membrane via hPepT1, and then be hydrolyzed
in the mucosal cell, blood, or liver. The design of prodrugs of
poorly permeable analogues that target the PepT1 transporter

has been demonstrated to be a successful strategy to improve
oral bioavailability.[31] In addition, recent reports on the expres-
sion of hPepT1 in some cancer cell lines describe the possibili-
ty of exploiting such transporters for anticancer therapy.[32]

Experimental Section

Generation of the hPepT1 model

The amino acid sequence of the human PepT1 transporter was re-
trieved from the Swiss-Prot database (entry code P46059 S15 A1_
HUMAN). The model of the human transporter was generated by
fragments with a strategy that involves the following steps: 1) the
fragmentation of the primary sequence into 25 segments (namely
12 TM segments TM1–TM12, six extracellular loops EL1–EL6, five
cytoplasmic loops CL1–CL5, and two terminal segments NT and CT,
as compiled in Table S4, Supporting Information); 2) the homology
modeling of these segments separately using Fugue;[33] and 3) the
assembly of fragments using the structure of the E. coli lactose per-
mease LacY (PDB code: 1PV6) as a final template, the use of which
is justified by its known homology as illustrated by pairwise align-
ments between the sequences of LacY and hPepT1 (Figure S2, Sup-
porting Information).

For each segment, Fugue is able to produce several realistic
models, and the best structure was chosen considering the follow-
ing major conditions: 1) the predicted secondary structure from
the sequence alignment using ClustalX (see Figure S2); b) the lack
of unpredicted gaps; c) the prediction score (ZSCORE) as calculated
by the Fugue program; d) the helical conformation of the trans-
membrane segments with a slight characteristic bend in helices
containing proline and glycine residues; and e) the global “U”
shape of the loops in which the two ends are close enough to join
to TM segments.

Table S4 (Supporting Information) lists the templates used by
Fugue to generate the selected model for each fragment. Even
avoiding a systematic analysis, Table S4 allows some relevant con-
siderations: 1) the bacterial LacY is never used as a fragmental tem-
plate, indicating that the homology concerns the global topology
rather than local folding; 2) several TM segments are modeled
using templates characterized by coiled-coil structures,[22] and this
can be explained by considering that such helical motifs often play
key roles in molecular recognition processes and indeed the mod-
eled TM segments are involved in substrate recognition (TM1, TM7,
TM8, TM9); 3) more external TM segments are modeled using
AKAP proteins, which are characterized by highly hydrophobic sur-
faces;[34] 4) the templates used for the loops are surely more heter-
ogeneous, including enzymes, receptors, and regulatory peptides;
5) the longest segment (EL5) is predicted by using a bacterial su-
crose phosphatase that shows mixed a/b topology.[23] The use of
such a template for the EL5 loop can be justified by sequence
alignment, which confirms an interesting homology (identity:
11.3 %, similarity: 30.9 %).

The assembly of predicted fragments was performed by superim-
posing the backbone of a fragment with that of the corresponding
segment in the structure of LacY and manually connecting the ad-
jacent segments using VEGA software.[35] Specifically, the superim-
position involved the Ca atoms of transmembrane helices only, as
the loop arrangements, which were, however, defined considering
the corresponding segment of experimental template, are clearly
defined by the position of TMs, and their conformation was further
relaxed by subsequent molecular dynamics (MD) simulations (while
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the TM bundle remains harmonically constrained during MD, as de-
scribed below).

With the backbone completed, side chains and hydrogen atoms
were added using VEGA. According to physiological pH, Arg, Lys,
Glu, and Asp residues were kept ionized, while His residues were
considered neutral by default. After a careful scrutiny of the ob-
tained structure to avoid unphysical conditions, the model under-
went an initial minimization until the RMS gradient was equal to 1
to discard high-energy interactions, followed by a local minimiza-
tion until RMS = 0.05, at which all atoms were kept fixed except for
those within a sphere of 5.0 � radius around the manually connect-
ed bonds (at the fragment ends). The model was optimized by a
final minimization composed of two phases: first, a minimization
without constraints until RMS = 0.1 kcal mol�1 ��1, and then a
second minimization with backbone fixed until RMS = 0.01 kcal
mol�1 ��1 to preserve the predicted structure.

To gain a better relaxation and a more accurate arrangement of
the hPepT1 model, an MD equilibration was performed in vacuo.
The simulations were carried out in three phases: 1) heating from
0 to 300 K over 3000 iterations (3 ps, i.e. , 1 K per 10 iterations);
2) starting equilibration for 2500 ps, during which the transmem-
brane backbone was kept fixed; and 3) equilibration for 7500 ps,
during which the transmembrane backbone was harmonically re-
strained with decreasing harmonic force constants. In detail, the
harmonic force constant was equal to 1 (1000 kJ mol�1 nm�2) at the
beginning of the simulation and was then divided in two every
1.5 ns (then five MD simulations were performed with the harmon-
ic force constant equal to 1, 0.5, 0.25, 0.12, and 0.06). Globally, the
MD simulations lasted 10 ns, and the helices were correctly pre-
served with the harmonic force constant equal to 0.06. The last
frame was used for the trimer assembly after a final minimization
until RMS = 0.01 (with harmonic force constant equal to 0.06).

The MD simulations had the following general characteristics : con-
stant temperature at 300�10 K by means of Langevin’s algorithm;
Lennard–Jones (L–J) interactions were calculated with a cutoff of
10 �, and the pair list was updated every 20 iterations; Newton’s
equation was integrated with the r-RESPA method every 4 fs for
long-range electrostatic forces: 2 fs for short-range nonbonded
forces, and 1 fs for bonded forces; a frame was stored every 5 ps,
yielding 2000 frames. All calculations were carried out on an eight-
node Tyan-VX50 system. All minimizations were performed using
the conjugated gradients algorithm. The package Namd 2.51[36]

was used with the force field CHARMM v22 and Gasteiger’s atomic
charges.

Ligand setup and docking analyses

The set of 50 hPepT1 ligands was compiled from published
data.[11, 37] Table 1 lists the modeled substrates that can be structur-
ally subdivided into peptides and b-lactam antibiotics. The affinities
of such ligands (expressed as Ki and listed in Table S2, Supporting
Information) range from 0.01 to 110 mm, and are equally divided
among substrates with negative and positive pKi values.

The ligands were modeled in their ionized form, as they may be in-
volved in ligand recognition. The ligand structure was built using
VEGA software, and the overall geometry and atomic charges were
optimized using MOPAC 6.0. Their conformational profile was ex-
plored by a Monte Carlo procedure (as implemented in VEGA)
which generated 1000 conformers by randomly rotating the rotors.
All geometries so obtained were optimized and clustered accord-
ing to similarity to discard redundant conformers; in detail, two ge-

ometries were considered as nonredundant if they differed by
>608 in at least one torsion angle.

The docking and scoring procedure involved extensive rigid-body
sampling with the OpenEye Scientific Software package FRED
(OpenEye Scientific Software, Santa Fe, NM, USA). Briefly, the FRED-
based sampling was performed in a side box of 8 � around some
known residues involved in ligand recognition (i.e. Glu26, Trp294,
and Tyr588). The obtained complexes were then refined focusing
the minimization on the atoms inside a sphere of 10 � radius
around the bound ligand. The minimized complexes were finally
used to recalculate the docking scores.

Pharmacophore generation

All structures were generated using the 2D/3D editor sketcher in
the Catalyst 4.10 software package (Catalyst v 4.10, 2006, Accelrys
Inc. , San Diego, CA, USA) and submitted to energy minimization
and conformational analysis (maximum number of conformers:
250, generation type: best quality, energy range: 10 kcal mol�1).

Catalyst provides a dictionary of chemical features found to be im-
portant in drug–enzyme and drug–receptor interactions. These are
hydrogen bond donors, hydrogen bond acceptors, aromatic ring,
hydrophobic (aliphatic or aromatic) groups, and positively and
negatively charged groups. The inter-feature spacing penalty was
decreased from its default value to 100 pm. No constraint on the
minimum and maximum number of each type of feature in the re-
ported pharmacophores was applied.

The pharmacophore model was generated by HypoRefine 4.10
using a training set of 25 compounds.[38] Specifically, we select
compounds with various degrees of activity that spans five orders
of magnitude, making this a good data set for the HypoRefine
module. The uncertainty value of compound activity, which repre-
sents the ratio range of uncertainty in the activity value based on
the expected statistical variability of biological data collection, was
set to 3.

On the basis of the atom types in the molecules of the training
set, five chemical feature types were used in the HypoGen run: hy-
drogen bond acceptor (A), hydrogen bond donor (D), hydrophobic
(H), hydrophobic aliphatic (Z), and hydrophobic aromatic (Y)
groups.
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